48,816 research outputs found

    A comparison of two phosphorus soil tests as inputs to a pasture growth model : a thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Science in Soil Science at Massey University

    Get PDF
    Glasshouse and field studies were carried out to investigate relationships between plant growth and extractable soil phosphorus and between fertilizer phosphorus and extractable soil phosphorus respectively. The purpose of the studies was to provide information with which to quantify the parameters of a simple model designed to predict relative pasture yield as a function of soil and fertilizer phosphorus. The relationship between yield and water-extractable soil P differed markedly between two soils of different P retention properties in glasshouse studies using both intact cores and conventional pots. To illustrate this difference, the levels of water-extractable P (0-8 cm depth) in intact cores required for 90% of maximum yield were 12.7 and 2.6 μg/g soil in the soils of lower and higher P retention respectively. In contrast, the relationship between yield and Olsen (bicarbonate-extractable) P was much less soil type dependent. The corresponding levels of Olsen P in intact soil cores required for 90% of maximum yield were 17.7 and 17.8 ug/g soil respectively. For modelling purposes, the Olsen procedure was therefore considered to provide a more suitable index of plant available soil P from which to predict pasture production on soils differing in P retention. The proportion of yield variation accounted for by differences in extractable soil P was 25% or less in initial harvests from the intact cores, 50-75% in later harvests from the intact cores and 89-97% in the pot experiments. The results of the intact core experiments, however, were considered to be more directly applicable to the field situation than were the results of the pot experiments. Seasonal changes in extractable soil P in Tokomaru silt loam included an increase during the dry season to reach a peak in late autumn followed by a decline in winter. The magnitude of these changes with respect to Olsen P was approximately 2.5 and 5 μg/g soil in the 0-8 cm and 0-4 cm depths respectively. A subsequent decline in extractable soil P during the spring and second summer was attributed largely to plant uptake of soil P and its loss in discarded clippings. The application of superphosphate increased extractable soil P in proportion to the rate applied. The increases per unit of applied fertilizer P, in both absolute terms and relative to an initial (time-zero) increase, were greater in a soil of low P retention (Tokomaru) than in a soil of high P retention (Ramiha). Water-extractable P (0-8 cm depth) was increased on average by 2.3 and 0.2 μg/g in the Tokomaru and Ramiha soils respectively six months after the application of 40 kg P/ha as super-phosphate. The corresponding average increases in Olsen P (2.7 and 1.1 μg/g) were greater, and differed less between the soils, than the increases in water-extractable P. Thus, neither soil P extraction procedure was independent of soil type in terms of the effects of applied fertilizer P. For modelling purposes the effects of applied fertilizer would need to be assessed in a wider range of soils. The level of water-extractable P in stored, air-dry soils was found to undergo short-term fluctuations, apparently due to changes in the conditions of extraction such as variations in the pH of distilled water. Longer-term increases of 25-100% in the level of water-extractable P of stored soils also occurred. No reason for the latter changes was apparent

    The Unresolved Tension Between Trademark Protection and Free Movement of Goods in the European Community

    Get PDF
    Developments in computer-aided engineering and the rapid growth of computational power have made simulation-driven process and product development efficient and useful since it enables detailed evaluation of product designs and their manufacturing processes. In the context of a sheet metal component, it is vital to predict possible failure both during its forming process and its subsequent usage. Accurate numerical models are needed in order to obtain trustworthy simulation results. Furthermore, the increasing demands imposed on improved weight-to-performance ratio for many products endorse the use of high-strength steels. These steels often show anisotropic behaviour and more complex hardening and fracturing compared to conventional steels. Consequently, demand for research on material and failure models suitable for these steels has increased. In this work, the mechanical and fracture behaviour of two high-strength steels, Docol 600DP and Docol 1200M, have been studied under various deformation processes. Experimental results have been used both for material characterisation and for calibration of fracture criteria. One major requirement as concerns the fracture criteria studied is that they should be simple to apply in industrial applications, i.e. it should be possible to easily calibrate the fracture criteria in simple mechanical experiments and they should be efficient and accurate. Consequently, un-coupled phenomenological damage models have been the main focus throughout this work. Detailed finite element models including accurate constitutive laws have be used to predict and capture material instabilities. Most of the fracture criteria studied are modifications of the plastic work to fracture. Ductile tensile and ductile shear types of fracture are of particular interest in sheet metal applications. For these fractures the modification of the plastic work relates to void coalescence and void collapse, respectively. Anisotropy in fracture behaviour can be captured by the introduction of a material directional function. The dissertation consists of two parts. The first part contains theory and background. The second consists of five papers

    Reusable Software Components for Robots Using Fuzzy Abstractions

    Get PDF
    Mobile robots today, while varying greatly in design, often have a large number of similarities in terms of their tasks and goals. Navigation, obstacle avoidance, and vision are all examples. In turn, robots of similar design, but with varying configurations, should be able to share the bulk of their controlling software. Any changes required should be minimal and ideally only to specify new hardware configurations. However, it is difficult to achieve such flexibility, mainly due to the enormous variety of robot hardware available and the huge number of possible configurations. Monolithic controllers that can handle such variety are impossible to build. This paper will investigate these portability problems, as well as techniques to manage common abstractions for user-designed components. The challenge is in creating new methods for robot software to support a diverse variety of robots, while also being easily upgraded and extended. These methods can then provide new ways to support the operational and functional reuse of the same high-level components across a variety of robots

    Platform Relative Sensor Abstractions across Mobile Robots using Computer Vision and Sensor Integration

    Get PDF
    Uniform sensor management and abstraction across different robot platforms is a difficult task due to the sheer diversity of sensing devices. However, because these sensors can be grouped into categories that in essence provide the same information, we can capture their similarities and create abstractions. An example would be distance data measured by an assortment of range sensors, or alternatively extracted from a camera using image processing. This paper describes how using software components it is possible to uniformly construct high-level abstractions of sensor information across various robots in a way to support the portability of common code that uses these abstractions (e.g. obstacle avoidance, wall following). We demonstrate our abstractions on a number of robots using different configurations of range sensors and cameras

    Software Reuse across Robotic Platforms: Limiting the effects of diversity

    Get PDF
    Robots have diverse capabilities and complex interactions with their environment. Software development for robotic platforms is time consuming due to the complex nature of the tasks to be performed. Such an environment demands sound software engineering practices to produce high quality software. However software engineering in the robotics domain fails to facilitate any significant level of software reuse or portability. This paper identifies the major issues limiting software reuse in the robotics domain. Lack of standardisation, diversity of robotic platforms, and the subtle effects of environmental interaction all contribute to this problem. It is then shown that software components, fuzzy logic, and related techniques can be used together to address this problem. While complete software reuse is not possible, it is demonstrated that significant levels of software reuse can be obtained. Without an acceptable level of reuse or portability, software engineering in the robotics domain will not be able to meet the demands of a rapidly developing field. The work presented in this paper demonstrates a method for supporting software reuse across robotic platforms and hence facilitating improved software engineering practices
    • …
    corecore